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A computer program for solving two-dimensional incompressibie
viscous fluid flow in general domains is described. This is based on the
simplified Marker and cell technique, but it has a number of novel
features. A user-supplied data file of coordinates prescribes the fiuid
domain which can be quite general and needs only 10 be connected.
With a view to parallelisation the momentum equations are solved
explicitly, but an automatic step-changing routine optimises the
stability restriction. A conjugate gradient solver is used to invert the
discrete Potsson equation. An accurate approximation to the stress
conditions on the free surface is adopted. The code is written in
structured FORTRAN with features from FORTRAN 80. The efficacy
of the code is illustrated by appiying it to some industrial problems.
© 1994 Academic Press, Inc

1. INTRODUCTION

The marker-and-cell (MAC) method is a finite difference
solution technique based on a staggered grid for investi-
gating the dynamics of an incompressible viscous fluid. It
was first introduced by Harlow and Welch [1]. It employs
the primitive variables of pressure and velocity and has par-
ticular application to the modeiling of fluid flows with free
surfaces. One of the key features is the use of virtual particles
whose coordinates are stored and which move from one cell
to the next according to the latest computed velocity
components. If a cell contains a particle it is considered to
contain fluid, thus providing flow visualization of the free
surface. Amsden and Harlow [2] subsequently developed
a simphfied MAC method (SMAC) which circumvented
difficulties with the original method by splitting the
calculational cycle into two parts, a provisional velocity
field calculation followed by a velocity revision employing a
potential function to ensure incompressibility throughout.
Amsden and Harlow [2] describe a specific program,
ZUNI, which embodies the SMAC methodology. ZUNI
can be used to calculate two-dimensional fluid flow in
rectangular or cylindrical coordinates. It can deal with free-
surface flows with free-slip or no-slip conditions applying
at rigid boundaries. Furthermore, provision is made for
prescribed inflows and outflows, and a rectangular obstacle

can be incorporated into the region. Fundamentally,
though, the fluid domain is required 1o be rectangular and
it is restricted to two dimensions.

There have been a number of developments of the SMAC
code over the intervening years. Due to the limitation on the
time step size for low Reynolds number Deville [3], Pracht
[4], and Golafshani [5] have introduced implicit type
schemes. In particular, Pracht [6] developed an implicit
treatment of the velocity (and density) similar to the
implicit-fluid Eulerian (ICE) method (see Harlow and
Amsden [7]) using an arbiiray Lagrangian—Eulerian
(ALE) computational mesh. This in principle allows the
calcuiation of flows involving curved or moving boundaries.
Sicilian and Hirt [8 ] have also been active in developing the
SMAC method. More recently, they have developed the
containment atmosphere prediction (CAP) code using a
particle in cell (PIC) approach to model the flow of a
contaminant, in this case hydrogen. Miyata and Nishimura
{9-11] have developed the MAC method for the simulation
of water waves generated by ships of arbitrary configuration
and breaking waves over circular and elliptical bodies. In
both cases the inviscid boundary condition on the free sur-
facc was employed. A solution, based on the original MAC
philosophy, for the free-slip condition imposed on an
arbitrary domain was presented by Viecelli [12, 137. This
method is applicable to cases where all the boundaries are
arbitrarily shaped and the mesh points do not coincide with
boundary points. In his calculations, it was necessary to
define and flag cells in the vicinity of the boundaries and to
define the normal at each boundary cell. At cells adjacent
to the boundary, he used weighted interpolation formulae
to calculate momentum and pressure on the mesh. The
method, named ABMAC by Viecelii, was applied to scveral
specific problems and good results were reported. The
extension of the technique using the SMAC philosophy is
not clear, particularly, when no-slip conditions are imposed
on boundaries of arbitrary shape. More recently, McQueen
and Rutter [ 14] and Markham and Proctor [15] described
modifications to the fluid flow code ZUNI to provide
enhanced performance. Essentially they employed an
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automatic time-stepping routine and a preconditioned
conjugate gradient solver for the Poisson equation in a
rectangular region. Although the code we describe goes
much further than those authors, it is fair to say that this
work in its early stages was strongly influenced by them.

One feature of the SMAC (Amsden and Harlow [2])
method is that the calculational cycle is split into two parts:
one for the velocity field and the other for the pressure fieid
so that there is no iteration procedure involving velocity
and pressure. We use this essential idea in the development
of GENSMAC. In this report we describe modifications to
the SMAC method in order to deal with free surface flows
in general domains when the ne-slip condition is imposed
on curved boundaries, Sample calculations include the
simulation of cavity filling which is a common means of
moulding used in a range of industries including plastics,
foods, ceramics, and metallurgy. Other more specific
problems tackled with the same approach involve flow in
the bottom of a circular cavity and the dual inlet problem in
cavities of complex shape.

2. GENSMAC

The original motivation for considering the SMAC
method was its potential applicability to a problem of
simulating the high speed injection of material into a com-
plex mould with the view to developing a useful design tool
for engineers. Thus a method was required that was truely
effective for general regions. In this paper we describe
modifications to the SMAC method in order that it can be
used to solve problems for quite arbitrary shaped domains.
This method, which we call GENSMAC, is at present only
two-dimensional; our intention is to develop it for three
dimensions and optimise it for running on computers with
large scale parailel architectures. The method, as currently
implemented, has the following characteristics:

{i) The code was written from scratch in structured
FORTRAN with features from FORTRAN 0.

(ii) It has the capacity for solving free surface fluid flow
in arbitrary shaped domains. The user needs only supply a
data file of coordinates and select interpolating functions
most appropriate to each part of the curve,

(iii} It has an automatic time step changing routine (the
idea is taken directly from Markham and Proctor [151)
which allows the stability restriction to be optimised.

(iv} It uses a conjugate gradient solver to solve a
Poisson equation for the corrected velocity field. Our
experience with the successive overrelaxation method
showed it not to be efficient. Further, our experience with
Markham and Proctor’s code [ 15] showed it not be robust.
However, the particular discretisation described in this
paper ensurecs a SPD system for the discrete Poisson
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equation and the direct use of CG thus provides a robust
solver.

{v) It contains an accurate approximation to the stress
conditions on the free surface.

(vi) Tt can simulate flows involving many inflow and
outflow boundaries.

The code, at present, only treats no-slip boundary
conditions on curved boundaries.

3. THE UNDERLYING EQUATIONS AND THE
SMAC METHODOLOGY

The basic equations for two dimensional time-dependent
incompressible viscous flows are the Navier-Stokes equa-
tions, together with the continuity equation which in
non-dimensional form become

@+a_”f+5_“’i__@+Li('a_“_?ﬂ
dt dx dy  0x Redy

0y Ox
+(1/Fr?) g (1)

o ow @ 10 (0 d
or dx Oy dy Redx\dy O0x
+(1/Fr) g, (2}
du  Jv
5;_'_5)::0 (3)

where Re=UL/v and F. = U/\/L_g arc the associated
Reynolds number and Froude number, respectively. U and
L are typical velocity and length scales, g is the gravitational
constant with g=1(g,, gy)T as the unit gravitational vector
and u= (u, v)T are the non-dimensional components of
velocity, while ¢ is the non-dimensional pressure per unit
density.

The basic idea of the SMAC method (and also
GENSMAC) is to solve the Navier-Stokes using a
staggered grid and to “push” forward virtual particles by
solving dx/dt =u (x = (x, y)" and w= (u, v)") for the newly
computed value of the velocity,

More precisely, the procedure can be stated as follows.
We suppose that at a given time, say t,, the velocity field
u(x, t,) is known and boundary conditions for the velocity
and the pressure are given. The updated velocity field
u{x, 1), where t = 15+ 1, is then calculated as follows:

(i) Let @(x, t,) be an arbitrary pressure field which
satisfies the correct pressure condition on the free surface,
(i)

from

Calculate the intermediate velocity field, @(x, ¢),
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i [ out dww 9§ 1 9 (6:1 617) 3.1. Boundary Conditions
| —-——_— —_— = ——
a 6x dy Ox Redy\dy 0x There are several types of boundary conditions which can
be applied at the mesh boundary, namely: no-slip, free-slip,
+(1/Fr*) g x] (4)  prescribed inflow, prescribed outflow, and continuative out-
= flow. Except for the no-slip condition, GENSMAC treats
0o [ _Ouv 3_02 _de 1 0 (a_u _ 3_”) these boundary conditions in a similar manner to SMAC.,
ar dx dy dy Redx\dy 0x For a detailed discussion see Tome and McKee [16]. On
the mesh boundary the appropriate boundary condition for
+ (1/Fr?) gy] (5) ¥ (Harlow and Amsden [27]) is
=g 61'0 ~ 0
with @(x, ty) =u(x, 14}, using the correct boundary condi- on

3.2. The Basic Finite Difference Equations

tions for u(x, 1,}. We now define the true velocity field
u(x, 1) =a(x, 1) ~Vy A staggered grid is employed. A typical cell is as shown in
with Fig. 1. The variables pressure -‘3;, ;» the added velocity poten-
V2 =V -ii(x, 1) tial ¢, ; and the divergence D, ; arc positioned at the cell
- R centre while u, ; and v, ; are staggered by a transiation of
dx/2 and dy/2, respectively.

The momentum equations (4) and (5) are discretised and
applied at the w-nodes and the v-nodes, respectively. In
finite difference approximation these equations become
(Amsden and Harlow [2]):

The point here is that u(x, ¢) now satisfies
V-ulx, rj=0.

(ili) Solve the Poisson equation

0 i~ Uiy
Vi =V .i(x, 1) (6) St
: . _¢i,j_¢'i+l‘j
{iv) Compute the velocity field i —
X
uix, 1) =1i(x, 1) - Vi (7N +”?+1/2,j—1/2”?+ V2. i—12 " Yis 1, 12V 2,4 12
: dy
{v) Compute the pressure. N Ui, 1 M= Wi s M-,
Once we have computed u(x, ¢) the pressure follows from .\ dx . .
(see MacQueen [32]) N NP 0 P U g m s = 24700 ))
Re &y?
$=¢+y/or _ Wit e Orer o1~ U 00 10)
) dx dy
Thus GENSMAC solves the momentum equations +(1/Fr2 9
. : : ) g, (9)
explicitly and a sparse symmetric system (the discrete

. . . . 1 o
Poisson equation)} for the potential function . In the case Vijv12 = Vi 2
of cavity filling the order of this system is continually 3t
increasing (since one only solves for u and ¢ within the bulk é. .

Particles are created at the inlets and are injected into the " . o o
containment region to represent the fluid. These are virtual L VAt TV Rk R LY AR TS AN ST
particles whose coordinates are stored at each time step and . . . 53‘”
then updated by solving + Vijr12% -1 Vi je3nVliivin

oy
d_x=u’ @zu (8) __(_1_.)]:(”?+1/2.j+1—u?+1f2,j__u?l,:’2.j+l. U1
dt dt Re 5x 8y
n | g
by Euler’s method. This provides the new coordinates of the + (20712 = Vianiw 12 = Ui 1w 112)]
particle, determining whether a particle moves into a new ox?

cell or leaves the containment region through an outlet. + (1/Fr?) g, (10}
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FIG. 1. Typical cell.

The Poisson equation (6) is discretised at cell centres using
the five-point Laplacian which can be written as

41[’:',;'_#/’:‘“.;_'l’ifs,j“lr/’i,ﬂ-s*‘l’i,f—x= —hzﬁi,j!
where

(11)

Di,j‘: Wig 12, Wiz 127 Y12~ Vi —1p

Ox Sy

and

k.= grid size (assuming ox = Jdy}.

3.3. Cell Flagging

Cells within the mesh are flagged according to whether
they are

1. Boundary cells (B). Cells lying on or outside the
boundary domain. They play a static role by prescribing the
position and curvature of the fixed boundary.

2. Empty cells (E). Cells containing no fluid.

3. Full cells (F). Cells containing fluid with no adjacent
empty cell on any of their faces.

4. Surface cells (S). Cells containing the free surface.
These cells have at least one adjacent empty cell on one of
their faces.
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FIG. 2. Types of cells in a GENSMAC mesh.
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These definitions are illustrated in Fig. 2 for a typical case.
There can be some ambiguity about how one chooses
whether a cell is a boundary cell as this depends upon where
the boundary cuts the particular cell. This question will be
treated in detail in the next section.

3.4 Free Surface Stress Conditions
The appropriate free-surface boundary conditions are the

vanishing of the normal and tangential components of stress
which can be represented by (Hirt and Shannon [17])

Ju du dv dv
¢ —(2/Re) [n!,(njr F +n.n, (-—— + —) +n,n, 5;]

dy  6x
=0 (12)
|:2nm fjlr£+(nm +n,m.) @_*_Q’{ +2 %
Y ox YTy ax nym'"(?y
=0, (13)

respectively, where n= (n,, #,) is the outward unit normal
vector to the surface and m=(m,, m,) is the tangential
vector.

It was pointed out (Hirt and Shannon {17]) that when
these conditions are not accurately satisfied one can obtain
results which are not correct, especially if the problem at
hand involves a low Reynolds number. Subsequently,
Nichols and Hirt [ 18] presented an improved treatment for
the free surface stress conditions in which the normal stress
(12) is applied at the actual fluid surface rather than at the
centre of surface cells. They defined a special ordered set
of marker particles describing the free surface and then
connected these particles by line segments in order to specify
the surface shape. The pressure at the surface cell centre was
then obtained from a linear interpolation between the
pressure at the surface and the pressure at an adjacent full
cell centre. They reported that with this scheme the free
surface conditions were accurately satisfied. The tangential
stress was approximated in the same way as the SMAC
method.

We have not yet implemented this technique in
GENSMAC since our intention has always been to solve
problems involving an arbitrary number of free surfaces and
an arbitrary number of inflows/outflows and the resulting
logical process of deleting/creating surface particles woulid
prove to be a formidable task. However, the implementa-
tion of the normal stress condition has been performed in
accordance with Hirt and Shannon [17] as follows:

Let us suppose that the grid size is small enough so that
the surface will cut the ceil at two edges. Then (12) and (13)
can be approximated by local finite differences according to
three cases:
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(a) Surface cells with only one side contiguous to an
empty cell. For these cells we assume that the surface will
cut two opposite cell edges so that either n, or n, will be
small. Then, (12) and (13) can be approximated by

2 [ou,
()0 14
and
du oOv
b;-*-a—x*—O, (15)

respectively, where » is either the x-direction or the
y-direction.

For instance, considering the surface cell in Fig, 3, the
corresponding finite difference approximation for the
normal stress (14) is

=i Uiy —Uicap, g
Re ox

while the tangential stress (15) is satisfied by relating the
velocity outside the surface to those inside the fluid by

9

dx

Vivj+12=0b 512 —E (w0 12,541 7 Uiy 1/2,;)-

Other types of surface cells with one side contiguous to an
empty cell are treated similarly.

(b} Surface cells with two adjacent sides comtiguous
with empty cells. For these cells we assume that the outward
normal direction lies at 45° between the open sides, in which
case (12) and (13) reduce to

1 /éu ov
*”—iﬁ(é;*a) (16)
and
du  de
P an

respectively. The sign in (16) is chosen to be the sign of 1, 11,

[JU£+H2J+I
S . E
A
ij+iiz Vi+1J+1!Z
Eal_-- D12,
1
s| " E

FIG. 3. Surface cell with right side open to 2n Eell.
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FI1G. 4. Surface cell with two adjacent sides contiguous with E-cells,

For example, if we consider the surface cell as shown in
Fig. 4 the finite difference approximation to the normai
stress (16) would be

¢r}j

b Tup i = Mis i1 — Uiy 1
2Re dy

+

Vst Uy 1yp— Vi1 e~ Wiy, 1/2]

ox

For the tangential stress (17} we require that éu/dx and
¢v/oy vanish separately. The reason for doing this is that the
mass conservation equation is also satisfied for these cells.
For instance, for surface cells having the top and right sides
contiguous with empty cells (see Fig. 4) we set

Uiprp, ;= Wio iz, Vijr12= Vi 120
For other configurationis of surface cells with two adjacent

sides contiguous with empty cells the finite difference
approximations are obtained similarly.

(c) Surface cells with three sides contiguous {or two
sides which are opposite to one another) with empty cells.
For these cells, a more accurate knowledge of the position
and shape is required than is presently determinable with
the SMAC method. In such cells the pressure is set to zero
and one velocity is adjusted so that V.u=0 in the surface
cell. If such cells arise it suggests that the grid should be
refined until they do not exist or that the high local
curvature be smoothed out.

One should note that the approximations described here
coincide with the ones given by Hirt and Shannon [17].
Further, with these approximations and provided the grid is
sufficiently fine, GENSMAU can solve problems involving
high curvature.

3.5. Particle Movement

As in SMAC, marker particles are used to represent the
fluid. Their essential task is to provide the position of the
moving free surface so that the configuration of the surface
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cells can be determined. They are updated at the end of each
calculational time step so as to provide the dynamics of the
fluid motion. The new particle coordinates are found by
solving (8) using Euler’s method. Thus, after the velocity
field is updated, the particles are moved according to

n+1 _ A+ 1
xpt i =x,4u,dt

n+l __

yp _yp+vp 5I"+l,
where (x,, y,) is the current particle position, 8¢"*' is the
actlfa.l time step empl.oyed, and (x," ! yathyis it.s updated
position. The velocities u,, v, are computed as in [2] by
using an area weighting scheme involving the four nearest
u, v velocities, respectively, In all problems this criterion for

particle movement has displayed good results, with particles
on the curved boundaries following the curved boundaries.

4. CURVED BOUNDARY TREATMENT

The basic idea is to decompose the curved boundary
into one which coincides with mesh segments and then to
solve the SMAC equations taking account of this pseudo-
boundary as follows.

4.1. Virtual Boundary Definition

For a rectangular domain, no problems arise when the
finite difference equations (9) and (10) are applied at nodes
near the boundary wall because these coincide with cell
edges; but a curved boundary will not, in general, coincide
with cell edges and any interpolation procedure must be in
accord with the staggered grid. This can be achieved first by
determining where the curved boundary cuts the cell edges
and then flagging this cell as a B-cell or not. Let us assume
that the cells are sufficiently small so that a curved bound-
ary will cut a cell through two of its edges. Let us denote
them by x, and y,, where x_ is the x-coordinate of the inter-
cept point belonging to the y-line at the bottom or top edge
of the cell while y, is the y-coordinate of the intercept point
lying on the x-line at the right or left side of the cell. Then,
all the possible configurations of cells cut by the curved
boundary can be classified into one of two groups: cells cut
on two adjacents sides (corner cell) and cells cut on sides
which are opposite to one another (edge cell). Figures 5 and
6 displays examples of such cells.

Among the corner cells and the edge cells we consider
those as shown in Figs. 5a, 5b, 6a, and 6b to be interior cells

b [+

a Xa d Xa

FIG. 5. Types of cells cut by a curved boundary: Corner cells.
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FIG. 6. Types of cells cut by a curved boundary: Edge cells.

(i.c., F, S, or E) because only a small part of these cells is
occupied by the rigid boundary while the other cells (see
Figs. 5c, 5d, 6c, 6d) are considered to belong to the curved
boundary, and a special treatment is then required for these
cases. Thus, the problem of flagging is considerably
simplified: we first determine which cells are cut by the
boundary and then which of these are interior ones. Let
{x., ».) denote the coordinates of the centre of any cell.
Then we check to see if one of the following is true:

X, > X, and .y, <y, {for left upper corner cells
(see Fig. 5a})}
or
Xg> X, and Vo> Ve {for left lower corner cells
(see Fig. 5b)}
or
X, <x, and Va> Ve {for right lower corner cells
(see Fig. 5¢)}
or
X, < X, and Vo< Ve {for right upper corner cells
(see Fig. 5d)}
or
X,> X, or xL>x, {for left vertical edge cells
(see Fig, 6a)}
or
v.>v¥. or y,>yp. {forlower horizontal edge cells
(see Fig. 6b)}
or

{for upper horizontal edge cells

(see Fig. 6¢)}

Yo y. oOF y,<y,
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or X, <X, {for right vertical edge cells

(see Fig. 6d)}.

If one of these is true the cell is flagged as a boundary cell;
otherwise it is a interior cell.

The conditions given above are designed to identify, from
among those cells in the group of corner and edge cells
which ones are to be considered as belonging to the curved
boundary or not. The criterion is based on the fact that a
ceil can be divided into four quadrants (see Fig. 7) and then
a test is made to identify which of these quadrants are inter-
cepted by the curved boundary. If the curved boundary
intercepts three or more quadrants of the cell we require the
cell to belong to the curved boundary; otherwise it is con-
sidered to be a interior cell. For instance, the first condition
for the group of corner cells is applied to cells which are cut
by the curved boundary on the top and left edges. It checks
to see if x,> x. and y, < y.. If these hold then the curved
boundary occupies at least some portion of quadrants I1,
IV, together with some fraction of quadrant I. In this case
the cell is considered to belong to the curved boundary. On
the other hand, if the test is not satisfied it means that the
curved boundary occupies only some fraction of quadrants
I and IT or [ and IV of the cell, in which case we consider this
cell to be an interior cell. The other three conditions for
testing the corner cells apply similar criteria.

The treatment for the edge cells is analogous. For
example, the first condition applies to celis which are cut on
the right and left edges (see Fig. 8) by a curved boundary
situated on the bottom side of the cell. It checks if the curved
boundary occupies any portion of the cell lying in the
quadrants I and I1, If 5o, the cell is considered to belong to
the curved boundary and, if not, it is an interior cell. The
other types of edge cells are treated similarly.

L)

i

1

;

1

!
¥ Xe
FI1G. 7. Corner cell cut by a curved boundary on top and left cell edges.
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¥ C
FIG. 8. Edge cell cut by a curved boundary from the bottom side.

Thus, after the cells have been flagged the boundary is
approximated by piecewise continuous mesh lines. Figure 9
displays an example of such a boundary. The approximated
boundary, which henceforth we shall call the *virtual
boundary,” will be the reference boundary for the pressure
calculation. One feature of the virtual boundary is that
when we are solving the Poisson equation for the corrected
velocities, the Neumann condition is easily handled because
it coincides with mesh lines.

4.2. Boundary Condition on Curved Surfaces

When the discretized Navier-Stokes equations are
applied at nodes adjacent to the virtual boundary, the » and
v values at boundary cell faces are required. If no-slip condi-
tions are imposed on the curved boundary, these values can
be estimated in terms of function values at internal nodes by
linear (bilinear) interpolation.

It can be seen that the boundary cells may have one or
two sides open to interior cells, as shown in Figs. 10 and 11.

-

FIG. 9. Virtual boundary for a GENSMAC calculation.
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FIG. 10. Configurations of B-cells with only one side open to interior
cell.

Thus, if a B-cell has one open side the u, v-values are
computed using linear interpolation while for B-cells having
two sides open, bilinear interpolation can be employed.
For instance, consider the B-cell as in Fig. 10a (or 10b)
for the calculation of u# and v. Let us denote the vaiues of
X, y, u, v at the mesh points pg by x4, ¥g, #g. v, With similar
notations at mesh points p, and p,. Then, it can be verified
that the use of linear Lagrangian interpolation to compute
u, gives
(x,—xq)

u0+ Up.
Xp— Xg

(X, —x,)
Xog— Xp

U=

Noting that u, = 0 (the no-slip condition states thatu=0on
the boundary) leads to

(x1—x,)

U, = Ug,

where u, is the internal value and x,, x, are known multi-
ples of the grid size & The y-coordinates of p, and p, are
both the same as the y-coordinate of p, and x, can thus be
found from the equation describing the curved boundary

f(-xbs y}=0

The value of v, is computed in the same manner, namely

(x)—x;)
Ul - vo.
Xo— Xp

For B-cells as in Figs: 10¢ and 10d it can be shown that the
use of linear Lagrangian interpoiation to compute x, and v,
gives

_(yl—'yb)
Uy =——""——1
Yo— s
=)
by=—"—""—— VYo
Yo— Fs
B4 N
B /B

F1G. 11; Configurations of B-cells having two sides open to interior cells.
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FIG. 12. Boundary cell with right and bottom sides cpen to interior cells.

respectively, where y, is computed from

f(x! yb)=0

In the case of B-cells having two open sides to interior
cells, the u, v values are computed by using bilinear inter-
polation (Strang and Fix [19]). For example, related to
Fig. 12, the value of u, is obtained by inverting an
isoparametric transformation from the square R:=
[0, 1] x [0, 1] onto the quadrilateral defined by the points
Pis P2s P3. Py 1t can be shown (Tome and McKee, [16])
that in this case u, can be approximated by

ug= (1 —so)(1 —to) uy + (1 — 1) sou»,

where

o 1= o= ) (va = yolih?

° L—(xg—x3){ys— J”o)/h2
3 1~ ¢,

0T T ro(1 = (xq— %2 V/h)

and (x;, y;), are the coordinates of the points p;,. The
required v-value is calculated similarly.

For other configurations of B-cells with two open sides to
interior cells, the u, v values are obtained in a similar
manner,

4.3. Boundary Conditions for the Poisson Equation

For the Poisson equation (6), the rigid boundary condi-
tion

oy
6n_0

is easily approximated by local finite differences because the
“virtual boundary” coincides with mesh lines. For instance,
for B-cells with only one side contiguous with a F-cell, this
equation becomes either

6!/!_ 61}1_
6x_0 or 6})—0,
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depending on whether the common separating line is in the
x- or in the y-direction. If a B-cell has two sides contiguous
with F-cells, then the boundary condition is represented by

W_o W,

ox dy

As the function ¢ satisfies the correct pressure condition
on the free-surface, the appropriate boundary condition for
§ on the free-surface is

v =0.

5. TIME-STEPPING PROCEDURE

Amsden and Harlow {27 suggested that the number of
caiculational cycles and hence the running time could be
reduced by the use of an adaptive time-stepping routine
which, at a given cycle, would automatically choose the
time step most appropriate to the velocity field at that
cycle. Welch er al. [20] discussed stability and accuracy
requirements for the MAC method, They suggested that
two stability restrictions are required. The first is akin to the
Courant condition,

bx &
Cdt< L)i—,

dx 4+ dy
where dx, 8y are the mesh spacings, &7 is the time step and
C is the “wave speed,”

C ={gk tanh k 8)'72,

k being the wave number and J the depth of the fluid. It
should be said that most of the examples in Welch eral.
[207] involve water waves. The second stability restriction
mvolves the viscosity:

2 2
2vér< _éxT_él_i
ox* 4 8y
1t is clear that the second criterion can be applied directly to
select an appropriate time step, but that the first will only
be appropriate for selected classes of problems. A more
appropriate treatment used by Markham and Proctor [15],
among others, is to require that no particles should cross
more than one cell boundary in a given time interval, ie,
that

[u] &t < dx

lv| dt < dy.
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Nete that, although the fluid is modelled as incompressible,
disturbances propagate through it at a speed governed by
the explicit discretisation of the momentum equations.

We shall now discuss the implementation of this adaptive
time-stepping procedure as described by Markham and
Proctor [157]. Let us define

A, &x*dy?
L= D 18
5twsc 2V 6x2+5y, ( )
dx
= . 1
dt,=A, 0 (19)
oy
= - 2
Bty = Ay 57—, (20)

where 0 < 4, < 1. The extra factors of 0.5 have been intro-
duced as a conservative measure. The time step to be used
at a given point in the calculation will be
ot = min(dt,,., 8¢, 81,) A, (21)

where 0 < A < 1: the reason for this extra factor will be
made clear shortly.

We have not specified what we mean by U, and V..
It could mean the maximum u (or v} velocity at the begin-
ning of a cycle or at the end. Clearly, if max, ; |U} 7| were
to be chosen instead of max; ; |U7 | then this could lead to
a substantial increase in computational effort. Markham
and Proctor [15] instead make a compromise: they chose
the tilde (provisional) velocities. Thus if the d¢,, or 8¢, is less
than the time step 6¢ adopted, then the time step is revised
and the tilde velocities recalculated. The role of the added
factor A in (21) is now seen as a means of compensating for
the use of the tilde velocities rather than the U7 (V71!
velocities. On test problems Markham and Proctor [15]
found this adaptive technique led to considerable computa-
tional savings. Qur experience concurs with them and this
technique has been incorporated in GENSMAC.

6. THE POISSON SOLVER

At every calcuiational cycle we have to solve the Poisson
equation on a general domain subject to Dirichiet and
Neumann boundary conditions. This can be extremely time
consuming for large problems, making the choice of an
appropriate robust algorithm vital.

There have been several methods for solving sparse linear
systems (e.g., Hageman and Young [21], Birkhoff and
Linch [227). Point iterative methods have often been used
due to their inexpensive iterates and simple implementation.
For linear systems arising from free surface flow problems,
Botta and Ellenbroek [23] presented a modified SOR
method which was implemented in the SOLA-VOF (Hirt
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and Nichols [24]) method and they reported good
improvement for the solution of the Poisson equation. They
pointed out that the standard SOR may have very slow
convergence in this case as the iteration matrix has complex
eigenvalues which jeopardise the convergence. This method
is based on a knowledge of the exact position of the free
surface so that its application to the SMAC method requires
considerable additional work for a complete formulation.
Ehrich [25] formulated an ad hoc SOR method for the
Poisson equation in irregular domains. His method worked
well compared to those obtained by Brazier [26] but lack
of theoretical results makes it less attractive for tackling
large probilems. Takemitsu [27] presented a method which
he claims is faster than the SMAC method. Essentially, he
introduced an invariant into the Navier-Stokes equations
and then solved the resulting Poisson equation through a
SLOR [28] iterative procedure involving both the potential
function and the final velocities. In his experiments, he com-
pared the exact solution of a Poiscuille flow with the solu-
tion obtained by MAC, SMAC, streamfunction-vorticity,
and his method. He reported that his method was faster
than MAC and SMAC methods, although the convergence

TOME AND MCKEE

of the procedure was not guaranteed and different relaxa-
tion factors needed to be employed when solving both the
SMAC equations and his own. Resuits for flows involving
free surfaces were not presented.

Aiming to enhance the performance of the ZUNI code
{Amsden and Harlow [2]), Markham and Proctor [15]
described modifications to the Zuni code regarding its
speedup and accuracy. In particular they repiaced the SOR
solver used in Zuni by a preconditioned conjugate gradient
solver (PCG) for the Poisson equation. Markham and
Proctor’s [15] code, called COSMAC, has a switch
mechanism, allowing a choice of Cartesian or cylindrical
coordinates. They reported that for the most part their PCG
package led to improvements, both in terms of computer
time and accuracy. However, COSMAC was tested at
Unilever Research Laboratories [29] for a jet intrusion
problem and the results were shown to be extremely
sensitive to parameter variation, often not working at all
and always requiring multiple precision.

In our case the solution is sought in an arbitrary but
preset region using Cartesian coordinates. Because this
region is piece-wise continuous, consisting of lines either

FIG. 13. Particle plot for the droplet problem at times t =0.0, 2.0, 30, 6.0, 7.5, 9.0, 120, and 22.5, respectively.
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FIGURE 13—Continued

paraliel to the x-axis or the y-axis, this leads to a system of
equations for the discretised Poisson equation whose matrix
is symmetric and positive definite. A conjugate gradient
method (see Qrtega [3]} has been implemented to solve
this lingar system resulting in a robust algorithm.

6.1. Implementation of the Conjugare Gradient Method

The discretised Poisson equation (11) leads to a linear
system which can be represented by

AX =D,

where A is a sparse symmetric matrix of order » and X and
D are column vectors of order n; n represents the number of
full cells (F-cells) within the mesh, D is the vector of
divergence (V- D) of each full cell, and X is the solution
vector.

The matrix A is assembled by applying Eq. (11) at each
full cell, row by row from right to the left. Each full cell
represents a row of matrix cocflicients in 4 and an clement

in D. The homogeneous Neumann condition enters via
modifications to the diagonal term in rows corresponding to
full cells with sides contiguous to the virtual boundary while
the homogeneous Dirichlet condition on the free surface is
applied by dropping the ofi-diagonal term in rows corre-
sponding to full cells which have sides contiguous with sur-
face cells. It can be shown that the presence of either a free
surface or a continuative outflow boundary assures that this
matrix is positive definite. After the matrix is assembled the
vector X is initialised as the vector of the potential function
in the previous time step and we apply the conjugate
gradient algorithm as in Ortega [30] to solve this linear
system.

At this point, it may be noted that a direct solver could
have been employed, or that a preconditioner could have
been added. which might well have speeded up the
conjugate gradient method. However, direct solvers are well
known not to be efficient for very large systems. On the
other hand, since the order of the linear system is con-
tinually varying at each time step, any preconditioner or
sequence of preconditioners would be expensive. Moreover,
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since our intention is to extend the method to three dimen-
sions, in which case a vector/parallel machine would be
required, it is well known that an efficient preconditioner is
dependent on the particular architecture of the machine

[311.

7. CALCULATIONAL EXAMPLES AND APPLICATIONS

To illustrate the capability of this newly extended version
of the SMAC method we present some calculations per-
formed by the GENSMAC code on free surface flows
involving curved boundaries. These include a droplet into a
cavity and jet intrusion into a container with curved walls.
Although here we do not attempt any detailed comparison
with experimental or analytical data, proof testing and
comparison confidence in the validity of the calculations.
A variety of comparisons were made with the problems
treated by Amsden and Harlow [9] with results that were
in good agreement.

In addition, to exhibit the applicability of this new techni-
que in being able to handle highly complicated geometries,

™

-

o
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we used the code to simulate the filling of cavities with
complex shapes used in the manufacture of novelty
products.

A, Droplet into a Circular Cavity

This example shows the motion of a square block of fluid
under the force of gravity as it falls into a circular cavity.
No-slip conditions are applied at the curved wall while free-
slip conditions were applied at the other walls. This example
was considered by Viecelli {12] with the free-slip condition
imposed on the curved wall. In this example we used a
“diffusion coefficient” (1/Re)=0.15 and the gravitational
force in the y-direction was (1/F2)= — 1.0. The parameters
for the time step routine were 4=0.8, A, =4,=05and a
distribution of 16 particles per cell was initially employed.
The whole calculation took 2274 cycles and the CG solver
took an average of 25 iterations per cycle to satisfy a
convergence criterion ¢= 107" for a linear system of 555
eguations (on average) at each time step. The test for
convergence was based on the L, norm of the residual, and
the final residual | D — 4X] was also required to satisfy

FIG. 14. Particle plot for the jet filling at times r = 0.0, 6.0, 12.0, 27.0, 56.0, 580, 62.0, and 62.68, respectively.
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FIGURE 14—Continued

the convergence criterion. Figure 13 displays the particle
configuration at different time intervals, Figure 13 shows
the dynamics of the fluid motion under the force of gravity
as it sloshes back and forth. The final picture shows the
approaching stationary configuration of the free surface.
As in all incompressible flow calculations, voiume or mass
conservation is necessary for accurate results. The CG
solver as implemented ensures that D, ; remains negligible
for each cell under a user-specified criterion and, as we can
see from the plots, the total volume also remains constant
throughout the run to within the accuracy that can be
measured from the particle configuration plots. Therefore,
we conclude that momentum and mass were rigorously
conserved, validating the treatment of the boundary
conditions on the cavity wall.

B. Jet Filling of a Curved Container

In this example we exhibit the feature of the GENSMAC
code in being able to deal with several inlets. This problem
was investigated (see [29]) with the COSMAC code [15]

to simulate the filling of a sguare container with a highly
viscous fluid. We employ a container with curved corners
and use a “diffusion coefficient” of (1/Re) =2.0 and switch
off gravity. One inlet is set on the left wall and another inlet
is set on the bottom wall. A mesh of 80 x B0 cells is employed
and a convergence criterion £=10"% is used. The run
started with an empty cavity and finished when the cavity
was completely full. Particle plots are shown in Fig. 14.

C. Simulation of a Moulding Process for Novelty Products

To further illustrate the capabilities of GENSMAC two
complex mould shapes were selected which are normally
used to manufacture novelty products: The “foot” mould
and the “finger” mouid are both asymmetric and have a
complex boundary in two dimensions.

The problem described here represents the high speed
injection moulding of relatively large cavities through small
inlet ports. The product material {¢.g., moiten plastic, liquid
metal, or slurry) enters the cavity with high velocity and
initially as a free jet impinging on the surface of the mould
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FIG. 15, The simulation of the filling process for the “foot” mould ar times 1 =0.0, 3.0, 12.0, 210, 31.40, and 38.72, respectively,

opposite the inlet port. The Reynolds number which is an
important determinant of the filling behaviour and, based
on the port size, entry velocity, and material rheology, is
typically small, whereas the Froude number is large
showing that the effect of gravity is negligible. The first
calculation shows the filling sequence of the “foot” mould.
In this case the complex morphology of the mould and the
high curvature of the flow domain required a fine mesh. The
second calculation simulates the filling of the “finger” mould
(a closed hand with the forefinger pointing forward) which
also involves a complicated flow domain and consequently
fine meshing,

Sample input data [29] were used for the simulation in
each case. These were in turn used to calculate both the
Reynolds number and the Froude number and to set the
initial timestep and overall fill time. Usually injection

moulding materials have complex rheologies which can be
sensitively dependent on other process parameters such as
temperature, rate of shear, etc. For simplicity all thermal
effects are ignored (a valid assumption, provided the rate of
filling is much greater than the rate of heat conduction into
the mould and that heat generation effects such as viscous
dissipation are negligible) and an appropriate “average”
value of Reynolds number (Re = 8 for the “foot™ mould and
Re =~ 6.666 for the “finger” mould) was used in each case.
The effect of gravity was neglected since the Froude number
was large for both problems (1/Fr” ~ Q(10~?). The mesh
sizes for the “foot” and “finger” moulds were 6200
and 18,972 cells, respectively. No stability problems
were encountered and the convergence characteristics of
GENSMAC were gencrally good for both these problems.
The results are displayed in Figs. 15 and 16, respectively.
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F1G. 16. The simulation of the filling process for the “finger” mouid at times ¢ =010, 6.0, 8.0, 14.0, 26.0, and 35.21, respectively.
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